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Are Pitch-Class Profiles Really “Key for Key”?1

Ian Quinn

Most current approaches to key-finding, either from symbolic data such as MIDI or from digital 
audio data, rely on pitch-class profiles. Our alternative approach is based on two ideas: first, that 
chord progressions, understood rather loosely as pairs of neighboring harmonic states demar-
cated by note onsets, are sufficient as windows for key-finding, at least in the chorale context; 
and second, that the encapsulated identity of a chord progression (modulo pitch-class transposi-
tion and revoicing) is sufficient – that is, that reduction of progressions to pitch-class distributions 
is not necessary for key-finding. The system has no access to explicit information about a chord 
progression other than its transpositional distribution in the training corpus, yet it is able to reach 
an almost stunning degree of subtlety in its harmonic analysis of chorales it’s never heard before. 
This suggests that reductionist approaches to tonality may be off the mark, or at least that pitch-
class reductionism might not be necessary for a principled account of key.

Most current approaches to key-finding, either from symbolic data such as MIDI or from 
digital audio data, use some form of the following procedure developed by Krumhansl 
and Schmuckler (Krumhansl 1990):

 – Select a window of music to be analyzed;

 – Determine the distribution of pitch classes within the window;

 – Use the pitch-class distribution to determine the most likely key.

The devil, as usual, is in the details. Should window size be defined in terms of chrono-
logical time, notational (metrical) time, or number of note onsets? How big should the 
window be? How does key-finding for a given window take into account results for 
previous windows? How should pitch-class distributions be weighted? How is a key de-
termination made from a given pitch-class distribution? The consideration of these and 
related questions has dominated the key-finding literature for some time.2

This paper proposes a novel approach to key-finding that is not based on pitch-class 
distributions, at least not in any recognizable sense. Tailored to a genre (the four-part 
chorale) favored first by early-modern theologians and then by late-modern music-theo-

1 I am grateful to Ian Bates and James Hepokoski for helpful commentary on an earlier version of this 
paper.

2 The title of this article alludes to Temperley 1999, one of the first articles to question Krumhansl’s 
methodology. For a more recent example of a discussion of methodological details see Chuan and 
Chew 2005.
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ry pedagogues, this approach is based on two ideas: first, that chord progressions, under-
stood rather loosely as pairs of neighboring harmonic states demarcated by note onsets, 
are sufficient as windows for key-finding, at least in the chorale context; and second, 
that the encapsulated identity of a chord progression (modulo pitch-class transposition 
and revoicing) is sufficient to serve as a basis for key-finding – that is, that knowledge of 
pitch-class distributions is not necessary for key-finding.

1. First data structure: the chord.

The reader is hereby forewarned that the word chord will be used in a rather nonstan-
dard sense in this paper. In its ordinary-language sense, the word ‘chord’ is often used 
to refer to a harmonic entity with features that can be used to compare it with other 
chords: a root, a quality (e. G., major, minor, dim7, sus4), and possibly an inversion. In its 
ordinary-language sense, not any collection of pitch-classes can be a chord – only those 
that can be generated by stacking intervals of a third (relative to some diatonic scale). 
‘A’ chord, in this context, is typically a theoretical entity abstracted away from the musi-
cal surface: although every note in a composition is said to fall under the influence of a 
chord, non-chord tones can appear, usually with the expectation that they will resolve 
in some style-dependent way.

1.1. Definition

Our sense of the word ‘chord’ will differ substantially from its ordinary pedagogical us-
age, referring to a snapshot of all pitch-classes sounding at any given moment.3 (In the 
context of MIDI data, which constitute the input to the key-finding algorithm discussed 
here, the chord corresponding to a given time is determined by the set of note-on mes-
sages active at that time; things are slightly more complicated in the context of unper-
formed notation, and significantly more complicated in the case of audio data.) There is 
therefore no distinction between chord tones and non-chord tones: a chord is no more 
or less than the sum of the tones heard. nor is there a restriction on what can constitute 
a chord; the model knows no distinction between consonant and dissonant, diatonic and 
chromatic, tertian and quartal, or any other set of theoretical terms.

Related to the model’s lack of distinction between chord tones and non-chord tones 
is its radically localized conception of what constitutes a chord: simply put, every time a 
new note sounds, a new chord is identified. The nature of the four-part chorale virtually 
guarantees that exactly four notes are sounding at any given moment; with few excep-
tions, each MIDI note-off message is immediately followed by a notionally simultaneous 
note-on message. Clearly it is this property of chorales that gives us the latitude to define 
chord in a manner that is at once so broad and so black-and-white. We will set aside 

3 David Temperley uses a similar structure (the pitch-class set) in his Bayesian polyphonic key-finding 
algorithm (Temperley 2002, 207), but there are two important differences. First, Temperley’s model 
uses a window rather than an instantaneous time-slice. Second, Temperley analyzes the pitch-class 
set into its constituent pitch-classes, whereas our model encapsulates chords.
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for now the question of the extent to which this definition can be carried over to other 
genres and other (non-MIDI) encodings.

Having said what can and should be called a chord, it remains for us to specify how 
chords should be identified. A chord will be characterized with reference to the bass 
voice, defined in this repertoire with respect to a particular contrapuntal part that al-
most always carries the lowest sounding note. The upper parts are identified in terms of 
their intervallic relationship to the bass, modulo octave equivalence and permutation of 
the upper parts. In other words, each chord’s essential properties are roughly the same 
as those embodied in figured-bass notation: no attention is paid to how notes above 
the bass are assigned to particular voices or registers. (The primary difference between 
figured-bass practice and the present model is that we reckon intervals above the bass 
in semitones rather than diatonic scale-steps.) We may pay attention to doublings – the 
number of copies of each pitch-class in each chord – or we may ignore this information.

Once the upper-voice intervallic structure of the chord is determined, we encapsulate 
this information via a human-readable label. From the key-finding algorithm’s point of 
view, this label is essentially arbitrary and unparseable – it is not merely a pitch-class 
distribution profile in disguise. example 1 illustrates the identification of chords in a Bach 
chorale.

0,3,7 3,3,10 4,7,9 0,4,7 4,7,10 0,4,7

3,7 3,10 3,8 4,75,7 6,7 3,7 3,7,10 3,7 5,9 4,7,9 4,7 4,7,10 4,7

7 9 9 00 0 7 7 9 7 5 7 7 0

mi.53 mi.73 ma.63 ma.53ss.54 ??.67 mi.53 mi.7 mi.53 ma.64 mi.65 ma.53 do.7 ma.53

fig. bass
(with doubling)

bass line

fig. bass
(without doubling)
fig. bass,
human readable
(without doubling)

3,3,8 0,4,70,5,7 0,6,7 0,3,7 3,7,10 3,3,7 5,5,9

Der du bist drei in Einigkeit

example 1

The second row from the bottom shows the semitonal figured bass, and the bottom row 
shows the human-readable labels. each label begins with a two-letter chord indicating 
the quality of the chord (see Table 1), followed by a dot and a series of numbers that 
specify the figured bass.4

4 For ease of reading, these numbers are given as diatonic intervals when the chord quality is identifi-
able; for unknown or unspecifiable chord types the numbers indicate the semitone size of intervals 
above the bass.
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letters
quality

numbers
triad seventh-chord other

ma major major — diatonic figured bass 
mi minor minor — “       “        “
di diminished diminished — “       “        “
au augmented — — “       “        “
do — dominant — “       “        “
hd — half-diminished — “       “        “
ss — — suspension-derived “       “        “
pp — — passing-derived “       “        “
?? — — other chromatic figured bass 

Table 1

1.2. Distribution of chords in the Bach corpus.

Of the 371 chorales in the Riemenschneider edition, twenty-two either duplicated an-
other harmonization or contained phrases repeated more than twice; these were ex-
cluded from the study on the basis that including them might give a distorted picture 
of the distribution of chords and chord progressions in the corpus. The remaining 349 
chorales, which constitute what we will refer to here as the ‘Bach corpus,’ contain 33,978 
chords representing 167 distinct chord types. Table 2 collates these types into a familiar 
hierarchy of categories – chord type, chord quality, and inversion5 – plus some catch-
all categories. The 27 types corresponding to the familiar four triad qualities and five 
seventh-chord qualities account for slightly more than three-quarters of all the chords. 
Another 8    % or so of chords could be understood as representing 10 tertian types such as 
incomplete triads or seventh chords, chords with added ninths, and so on.6 The remain-
ing 15    % of chords represent 130 nontertian chord types resulting from what are ordi-
narily called ‘non-chord tones,’ though we reiterate that this model does not distinguish 
between chord tones and non-chord tones.

2. Second data structure: the chord progression

Just as we adopted a broad view of what is considered a chord, let us define chord pro-
gressions without worrying too much about what is usually meant by the term.

5 Because the system assumes enharmonic equivalence, no distinction can be made between inver-
sions of augmented triads or diminished seventh chords.

6 It might be misleading to include ninth chords in the ‘tertian’ category, since these are almost all 
9–8 suspensions, and the chords resulting from other kinds of suspensions (2–3, 4–3, and 7–6) are 
included in the ‘nontertian’ category.
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root position 8054 67.5%

first inversion 3451 28.9%

second inversion 423 3.5%

major triads 11928 100.0% 61.4%

root position 3875 65.5%

first inversion 1659 28.0%

second inversion 386 6.5%

minor triads 5920 100.0% 30.5%

root position 206 14.1%

first inversion 1099 75.4%

second inversion 153 10.5%

diminished triads 1458 100.0% 7.5%

augmented triads 116 0.6%

TOTAL TRIADS 19422 100.0% 57.2%

root position 1299 42.6%

first inversion 995 32.6%

second inversion 168 5.5%

third inversion 589 19.3%

dominant sevenths 3051 100.0% 44.1%

root position 501 29.4%

first inversion 526 30.9%

second inversion 261 15.3%

third inversion 417 24.5%

minor sevenths 1705 100.0% 24.7%

root position 381 40.4%

first inversion 87 9.2%

second inversion 135 14.3%

third inversion 339 36.0%

major sevenths 942 100.0% 13.6%

root position 174 20.2%

first inversion 339 39.4%

second inversion 227 26.4%

third inversion 120 14.0%

half-diminished sevenths 860 100.0% 12.4%

diminished sevenths 358 5.2%

TOTAL SEVENTHS 6916 100.0% 20.4%

nontertian 5048 66.1%

tertian 2592 33.9%

TOTAL OTHER 7640 100.0% 22.5%

Table 2
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2.1. Definition

We define a chord progression as a pair of chords (each characterized as a collection 
of intervals above the bass) plus the ordered pitch-class interval between the two bass 
notes, measured in semitones. For purposes of the key-finding algorithm, the identity 
of a chord progression is also encapsulated and labeled with an arbitrary but human-
readable label. The statistical information the system uses to estimate key centers, in 
other words, does not include any specific information about what chords constitute a 
progression or what the intervals the bass line traverses. The label takes a form like this:

do.42–(10)–mi.63

which refers to a dominant seventh chord with its seventh in the bass, resolving normally 
to a minor triad in first inversion. The number 10 indicates that the bass moves down by 
step (–2 semitones, modulo 12).

2.2. Distribution of chord progressions in the Bach corpus.

In the 349 Bach chorales used in study (see section 1.2), there are 33,630 chord pro-
gressions representing 3353 distinct chord-progression types. The relative frequency of 
chord-progression types seems to obey Zipf’s law; that is, a ranking of all progression 
types by frequency will show a power-law relationship between rank order and fre-
quency. For Zipf’s-law distributions, log frequency is a linear function of log rank, with a 
slope close to –1 (in this case, about –1.23). This sort of distribution is associated with a 
number of social and linguistic phenomena, including most significantly the frequencies 
of words in natural-language corpora. Curiously, the distribution of progressions follows 
Zipf’s law much more closely than the distribution of chord types, suggesting that the 
best way to make analogies about ‘tonal grammar’ in this repertoire might be to think of 
progressions, not chords, as playing the role that words play in language. (Chords might 
be productively thought of as analogous to morphemes.)

Table 3 lists progression types occurring more than 200 times in the Bach corpus and 
provides information about the scale-degree distribution of each progression.

For each instance of a progression in the corpus, we determine the scale-degree 
identity of the first bass note relative to the chorale melody’s final pitch class (which is 
assumed to be the tonic); the table tallies the percentage of instances of each progression 
that occur on any given scale degree. Consider, for example, the fourth-ranking progres-
sion (n = 544),

do.7–(5)–ma.53,

consisting of a root-position dominant seventh chord followed by a root-position major 
triad, with the bass moving down by fifth. In over half of the instances of this progression, 
the first bass note is scale degree 5 relative to the global tonic. In most of the remaining 
instances, the first bass note is a whole step above or below the tonic, which we would 
understand as scale degree 5 of a tonicized V (dominant) or III (relative major of a minor 
key).
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Because tonicizations and modulations are quite common in the Bach chorales, it is not 
typical for a progression to show a frequency much higher than 50    % for any given scale 
degree. nor do many progressions have such sharply peaked scale-degree distributions 
as the one we have just seen. Consider two variants of the major V7 – I cadence just dis-
cussed. Without the seventh (see the third-ranked progression, n = 806), the descending-
fifth progression between two major triads is still associated with scale degree 5, but 
less so; also, the progression tends to happen more frequently starting from scale degree 
1 (tonic to subdominant rather than dominant to tonic). The ninth-ranked progression 
(n = 309), a variant of the V7 – I progression with the seventh chord in first inversion, has 
a much ‘flatter’ distribution than either of the other two, no doubt thanks to the frequent 
appearance of this progression in tonicizations and modulations instead of final cadences.

3. The key-finding algorithm

The present key-finding algorithm takes advantage of the differential distribution of pro-
gression types over scale degrees, leveraging this information to make accurate estimates 
of key center by means of a statistical-learning model. Since the model needs to be 
trained on real-world data, we avoid overfitting the model (i. e., begging the question) by 
dividing the Bach corpus a priori into a training set (the first 314 chorales, or 90  % of the 
corpus, ordered by Riemenschneider number) and a test set (the last 35 chorales, or 10  % 
of the corpus) which we can use to judge the model’s performance.

probability of beginning on scale degree
rank n irrev progression –2 –6 –3 –7 4 1 5 2 +6 +3 +7 +4 k

1 886 0.98 ma.53-(0)-do.7 0 1 2 14 2 8 53 12 1 2 0 0 5.8

2 815 0.5 ma.53-(0)-ma.53 0 3 14 6 3 40 28 1 0 0 0 0 0.3

3 806 0.75 ma.53-(5)-ma.53 0 2 7 13 5 17 43 9 0 0 0 0 3.6

4 544 1 do.7-(5)-ma.53 0 0 1 15 3 4 57 16 0 0 0 0 5.3

5 505 0.91 ss.54-(0)-ma.53 0 4 4 12 6 13 42 8 2 2 0 0 5.0

6 364 0.62 ma.63-(1)-ma.53 0 0 0 0 0 2 7 19 8 17 36 6 1.1

7 331 0.5 mi.53-(0)-mi.53 0 0 0 2 8 59 7 3 13 2 0 0 6.0

8 315 0.93 ma.53-(10)-do.42 0 0 4 14 6 14 49 5 0 1 0 0 5.3

9 309 0.94 do.65-(1)-ma.53 2 0 0 0 0 1 6 13 10 10 29 24 2.5

10 300 0.99 mi.53-(10)-mi.42 0 0 0 2 9 42 7 6 26 2 0 0 1.2

11 300 0.66 ma.53-(5)-mi.53 0 0 0 0 3 22 51 2 5 11 0 0 3.4

12 281 0.97 ma.53-(11)-ma.42 4 10 12 4 16 45 3 0 0 0 0 0 4.3

13 272 0.97 do.42-(11)-ma.63 5 16 6 11 47 9 0 0 0 0 0 1 6.2

14 267 0.25 ma.53-(7)-ma.53 2 10 9 2 17 53 2 0 0 0 0 0 4.8

15 258 0.87 di.63-(10)-ma.53 0 0 1 7 15 12 5 31 22 0 0 0 -0.7

16 234 0.75 mi.53-(0)-di.63 0 0 1 6 23 10 4 34 15 2 0 0 -0.2

17 224 0.38 ma.53-(11)-ma.63 2 8 8 5 15 52 4 0 0 0 0 0 5.2

18 212 0.92 ma.63-(0)-do.65 4 9 1 0 0 2 4 6 11 14 32 10 2.9

19 211 0.91 ma.53-(0)-ma.7 2 8 13 4 38 28 1 0 0 0 0 0 -0.0

20 204 0.95 do.65-(1)-mi.53 12 18 1 0 0 0 0 0 4 18 29 12 0.9

21 200 0.99 mi.65-(2)-ma.53 2 20 3 2 48 19 0 0 0 0 0 0 3.8

Table 3
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3.1. Training phase.

We train the model through the same procedure used to generate Table 3. Chorales are 
fed into the model one at a time. The system assumes that the final pitch class of the 
chorale melody is the global key center of the chorale. For each progression in each 
chorale, the model determines the scale-degree identity of the progression’s first bass 
note, based on the interval from the chorale’s global tonic and the bass note in question, 
and collates this information in a table. each row of the table corresponds to a progres-
sion type, and each column corresponds to one of the twelve possible chromatic scale 
degrees (up to enharmonic equivalence). For every observation of a progression, the 
system increments the value of one cell in the table. Once the system has processed all 
the chorales in the training set, tallying each instance of each progression it encounters, 
it converts the observations into probabilities by dividing each cell by the row total. The 
table then resembles an expanded version of Table 3. each row represents a probability 
distribution that allows the system to answer the following question: Given a particular 
instance of this progression in a novel chorale from the same corpus as the training set, 
and all other things being equal, what are the respective probabilities that each of the 
twelve pitch-classes is the novel chorale’s key center?

note that the model is not affected by the order in which it proceeds through the 
progressions or chorales in the training set. The context of each data point includes only 
the progression and the last note of its chorale melody. Recall, furthermore, that each 
progression has been encapsulated (assigned an arbitrary progression label). The system 
does not know what chords are in a progression, nor what its bass-line interval is – it only 
knows what the first bass note of the progression is, and what the progression’s arbitrary 
label is.

A potential problem arises in the case of progression types appearing a very small 
number of times in the training set. Suppose a progression appears just once; when 
converted into a probability, this single observation becomes the hypothesis that the pro-
gression will appear on the same scale degree 100  % of the time in novel chorales. Small 
numbers of observations lead to insupportably sharp probability distributions. To correct 
for this problem, a procedure called ‘laplace smoothing’ is applied to the frequency 
tables before they are converted into probabilities; this simply involves adding 1 to the 
raw number of observations of each progression on each scale degree. When the actual 
number of observations is large, the smoothed probabilities are virtually identical to the 
unsmoothed probabilities. The smaller the number of actual observations, the more the 
smoothing step tends to redistribute probability mass evenly among all 12 scale degrees. 
In the single-observation case, the smoothed scale-degree probabilities are 15.4  % (2/13) 
for the observed scale degree, and 7.7  % (1/13) for each other scale degree.

3.2. Test phase

During the test phase, the system encounters each novel chorale in the form of an or-
dered list of chords, converting it into a list of encapsulated progression labels. The sys-
tem proceeds through the list of chords once, maintaining a running estimate of global 
key center in the form of a probability-mass distribution over the twelve pitch classes. 
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The running estimate is taken into account as each new progression is read. The system 
is thus sensitive to the order in which it encounters progressions in the novel chorales of 
the test set, in contrast to the non-order-dependent character of the training phase. The 
algorithm is as follows:

1. Initialization. The system approaches each chorale with no assumption about key; it 
begins with a probability of 8.3  % (1/12) to all keys in its running estimate.

2. Input. The system reads a progression from the chorale, and retrieves the key-proba-
bility table for that progression that it generated during the training phase. Progressions 
not found in the training set are assigned equal-probability tables (8.3  % for all keys).

3. Smoothing. The previous running estimate is ‘smoothed’ by adding a constant amount 
of probability mass (5  %) to each key-center probability. This has the effect of decay-
ing the system’s memory, slightly biasing it toward revising its key-center estimate in 
the face of new data instead of holding on to previous estimates. A larger constant 
gives the system a more flexible sense of key, and a smaller constant makes it more 
conservative.

4. Updating. The system updates its running estimate of key probabilities by multiplying 
each probability in the smoothed running estimate (from Step Three) with the cor-
responding probability in the key-probability table for the current progression (from 
Step Two). The new running estimate is normalized, or scaled so that the total prob-
ability of 100  %.

5. Looping. If there are more progressions in the chorale, the system returns to Step Two. 
If not, the system moves on to the next chorale in the test set and returns to Step One.

4. Properties of the system’s key-finding results

There were thirty-five chorales in the test set, and the system accurately identified the 
key center of all thirty-five after processing the last progression. The test set included 
three phrygian chorales, which Bach invariably ends with a half cadence; in each case, 
the system ‘correctly’ identified the last note of the melody (the phrygian final) as scale 
degree 5. This result shows a particular robustness since the system, by design, ‘incor-
rectly’ analyzed phrygian chorales in the training set – in the training phrase, scale degree 
1 is defined as the last note in the chorale tune, contrary to Bach’s phrygian-mode usage.

let us now consider the system’s behavior in some detail. Our discussion will focus 
on the system’s analysis of the chorale “Befiehl du deine Wege,” Riemenschneider no. 
367 (see example 2). As a phrygian chorale, this is one of the more difficult and prob-
lematic pieces in the test set, and it raises some intriguing questions about the broader 
implications for music theory of this highly specialized computational model.

4.1. Localness

More interesting than the system’s final assessment of a chorale’s key is what the running 
estimate looks like while the system is working its way through the chorale. The thick 



IAn QUInn

 160 | ZGMTH 7/2 (2010)

shaded lines beneath the score in example 2 indicate key centers with a probability of 
20  % or greater; darker parts of the line correspond to higher probabilities. In terms of 
what the system is literally trying to predict – the final note of the chorale tune – it fails 
utterly. Only the last two progressions bring about any serious prediction of F-sharp, and 
even then it is a distant second to B, the technically incorrect front-runner (remember 
that B is the phrygian final). But in terms of key-finding at the ‘local’ level, the system 
performs excellently, following along with all of Bach’s modulations and tonicizations. 
The extent to which the system attends closely to local changes of key can be controlled 
at the smoothing step (step 3) of the algorithm. The more the system smoothes its run-
ning estimate (its ‘memory’), the more susceptible it is to each incoming progression; a 
low or negative smoothing value will cause the system to hold more conservatively to its 
estimate over the long run. It is important to note that the system’s memory is not at all 
particularized – it does not remember which progressions it has heard before, but only 
what its estimated key-center probabilities were. Put another way, it knows what it has 
thought, but it can’t remember why.

4.2. Mehrdeutigkeit

The chorale begins with an ambiguous progression that can be read as either V  – I in G 
or as I – IV in D. (In a different voice-leading environment, a passing seventh might distin-
guish these two cases, with C-sharp for D and C-natural for G.) The system, starting with 
a blank slate, initially estimates the key center as G and reads the bass line of the first pro-
gression as V  – I. It admits D as a second possibility midway through the first bar, but only 
gives up on G at the arrival of the cadential progression II6/5  – V at the beginning of bar 2. 

G

G

D D

D

B

E
A

B
F#

1 2 3 4 5

6 7 8 9 10 11 12

Befiehl du deine Wege

example 2
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Upon taking the repeat (not shown in example 1), the system holds on to the D-major 
interpretation of the first progression, reading the bass line of the first progression as I–IV.

What enables the system to analyze the same progression in different ways? Consult-
ing Table 1, we see that all other things being equal, the progression in question (rank 3, 
n = 806), a descending-fifth pair of root-position major triads, is about 2.5 times more 
likely to be V  – I than it is to be I – IV, yet these are both reasonably probable. The prob-
ability table is unable to distinguish between ‘I – IV’ and ‘V  – I of IV’ (or, for that matter, 
between ‘V  – I’ and ‘I – IV of V’); and one would do well to wonder whether these do, 
in fact, mean different things. As nicolas Meeùs writes, echoing Rameau: “Harmonic 
functions do not reside in chords, nor in the position of chords within an immanent tonal 
hierarchy. They result from a relation between chords. no chord is a dominant in itself, 
none is a tonic in itself; they become dominant and tonic with respect to each other 
when they occur in that relation” (2000, 15). For the system at hand, the only difference 
between what it hears at the beginning of each repeat of the ‘Stollen’ is its own predis-
position: the first time through it hasn’t got one, so it goes with the default, V  – I [of IV of 
D], and the second time through it’s predisposed to hearing D so it goes with the second 
choice, I – IV [of D itself].

4.3. Holism

The system holds on to its estimate of D despite what a human analyst would be likely to 
interpret as a move to B at the beginning of the second phrase. It is only a few chords into 
the phrase that the system even recognizes B as a possible key center, and only at the ca-
dence formula that the system lets go of its D hypothesis. In the third phrase, the system’s 
eagerness to return to D recalls its resistance to leave D in the second phrase. While this 
may seem to indicate a general bias toward the major key in a relative pair, there is scant 
evidence to support such a bias. In fact, for most standard dominant-tonic progression 
types, the system assigns an ‘in-III’ reading of the major-mode variant a higher probabil-
ity than it assigns to the ‘in-VI’ reading of the minor-mode variant. This suggests that on 
the whole, the model trained on this particular training set actually his a minor-key bias.

Rather than indicating some abstract feature of the model, it is likely that the system’s 
analysis of the second phrase is due instead to a much more specific bias: the three 
progressions that begin the second phrase, which result from the combination of a 9–8 
suspension with a passing motion in the bass, are unusually strongly associated with the 
relative minor in the training set. In other words, this ‘lick’ is not simply a signifier of the 
minor mode in the Bach chorales, but more specifically a signifier of the relative minor of 
the major.7 The model is sensitive to this kind of style- or corpus-specific detail. In fact, it 
is sensitive ‘only’ to this kind of detail: thanks to the encapsulation of chords and progres-

7 Indeed, the model knows no distinction between major and minor at all. Its task is only to predict 
key center, operationalized as the last note of the melody. Modifying the model to predict mode 
would be possible, but given Bach’s tendency to conclude minor-mode chorales with major triads, 
it would be a nontrivial task involving manual tagging of the training set or the limited use of pitch-
class profiles during the training phase.
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sions, any general ‘biases’ or ‘tendencies’ that we observe in its key-finding behavior can 
only be emergent properties of the statistical distribution of progressions in the corpus.

The holistic, emergent nature of the system is also evident when it comes to the most 
ambiguous portion of its analysis, the third and fourth phrases. For most of this passage 
the system admits two possibilities; it is only at the cadences that the analysis is clarified. 
Among all the progressions in the model, the most key-defining ones (those with the 
most sharply peaked transpositional distributions in the training set) are the progressions 
associated with cadences. In turn, they are key-defining in the model solely by virtue of 
appearing at a highly consistent transposition in the training set. Concepts of harmonic 
function, of dissonance treatment, of the imperfect seeking its perfection – to paraphrase 
Cohen (2003) paraphrasing Marchetto paraphrasing Aristotle – do not come into play 
here. All that matters is the bare fact that cadential progressions are less well-distributed 
transpositionally than are other kinds of progressions.

5. Questions

The surprising success of this model raises at least two families of questions. Particularly 
pressing are questions concerning the model’s generalizability. The chorale repertoire is 
unique on a number of counts: it is relatively homorhythmic and texturally consistent; 
the harmonic rhythm is fast enough (relative to the frequency of note onsets) to guaran-
tee a high information content in the harmonic domain; and it is easy to operationalize 
the identification of the crucial bass voice. Whether the system could be adapted to tonal 
repertoires that lack these characteristics – Classical piano sonatas, say, or Bach’s solo 
violin suites – is unclear.

Another group of questions has to do with the challenges this computational model 
poses to the standard music-theoretic ways of characterizing the phenomenon of key. 
The key-finding system presented here, I have emphasized repeatedly, is designed to be 
radically naïve. It has a prodigious memory, like most statistical-learning models, and a 
peculiar talent for long-range hearing (insofar as it is able to detect intervallic relation-
ships between a progression at the beginning of the chorale and the note at the end); 
but it has no capacity to engage in the kind of reductionist thinking favored by music 
theorists. Whatever knowledge the system has of pitch-class profiles, harmonic function, 
chord structure, dissonance, and so on is entirely implicit. The system has no access to 
explicit information about a chord progression other than its transpositional distribution 
in the training corpus, and yet it is able to reach an almost stunning degree of subtlety in 
its harmonic analysis of chorales it’s never ‘heard’ before. This suggests that reduction-
ist approaches to tonality may be off the mark, or at least that pitch-class reductionism 
might not be necessary for a principled account of key.
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