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Musical Expectancy
Bridging Music Theory, Cognitive and Computational Approaches1

Martin Rohrmeier

ABSTRACT: This article contributes to an interdisciplinary discussion of ways in which music-
theoretical, cognitive, and computational accounts of musical expectancy may be bridged. It 
introduces some fundamental concepts concerning modeling, computation, representation, and 
some of their implications for theory building. Taking Markov models as a case in point, this 
paper illustrates in detail core notions of representation, model structure, parameter estimation, 
context-dependency, sparsity and overfitting, as well as the distinction between different levels 
of expectancy (short-term vs. long-term and knowledge-driven vs. data-driven vs. veridical) that 
interact in the context of musical listening. The final part compares local and hierarchical ac-
counts of music and analyzes phenomena of nested implication-realization patterns, revision, 
and garden-path effects.

Dieser Artikel leistet einen Beitrag zur interdisziplinären Diskussion darüber, in welcher Form 
eine Brücke zwischen musiktheoretischen, kognitiven und computationalen Ansätzen zur mu-
sikalischen Expektanz geschlagen werden kann. Der Text führt zunächst grundlegende Konzep-
te der Modellierung, Computation und Repräsentation ein und diskutiert deren Relevanz für 
musiktheoretische Theoriebildung. Anhand des Beispiels von Markov-Modellen exemplifiziert 
der Autor wesentliche Aspekte der Repräsentation, Modellstruktur, Parameterschätzung, Kon-
textabhängigkeit, ›sparsity‹ und ›overfitting‹ sowie die Unterscheidung verschiedener Expektan-
zebenen (Kurzzeit vs. Langzeit und wissensgesteuert vs. datengesteuert vs. veridisch), die im 
musikalischen Hören zusammentreffen. Schließlich werden lokale und hierarchische Beschrei-
bungen von Musik verglichen und damit verbundene Phänomene, insbesondere verschachtelte 
Implikations-Realisations-Patterns, musikalische Revision und Holzwegeffekte, analysiert.

1. Introduction

A mind is fundamentally an anticipator, an expectation-generator.2

1 I owe special thanks to Markus Neuwirth for many inspiring discussions about this text and the 
ongoing exchange about ways of bridging the gap between music theory and music cognition. I am 
also very grateful to Taiga Abe, Christian Utz, and Jan Philipp Sprick for their numerous suggestions 
that improved the article to a great deal. Funding for this research has been generously provided by 
the MIT Department of Linguistics and Philosophy as well as the Zukunftskonzept at TU Dresden 
funded by the Exzellenzinitiative of the Deutsche Forschungsgemeinschaft.

2 Dennett 1996, 57.
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Once a musical style has become part of the habitual responses of composers, per-
formers, and practiced listeners it may be regarded as a complex system of prob-
abilities […]. Out of such internalized probability systems arise the expectations—the 
tendencies—upon which musical meaning is built […]. The probability relationships 
embodied in a particular musical style together with the various modes of mental be-
havior involved in the perception and understanding of the materials of the style consti-
tute the norms of the style.3

Musical expectancy is regarded as one of the most central aspects of music perception4, 
and as such has received a great deal of scientific attention. The concepts of expectancy 
and prediction link static analytical approaches in music theory and analysis with the 
dynamic temporal aspects of the musical listening experience. The core insight that mu-
sical experience is (in part) closely linked with the cognitive processing of patterns of 
expectancy dates back to Leonard B. Meyer’s seminal theory.5 Prediction and expectan-
cy formation constitute fundamental neurocognitive mechanisms of ongoing, automatic 
temporal processing of events of all kinds and are coupled with emotional reactions to 
the forms of expectancy associated with (musical) events.6 Up to present there is large 
agreement that a substantial part of musical emotional experience originates in ‘side ef-
fects’ of processing likely and unlikely events, fulfilled and unfulfilled predictions. Given 
its neurocognitive basis, it is barely surprising that music has evolved to make heavy use 
of various forms of expectancy and predictive processing to trigger strong emotional 
effects.7 Supporting this cognitive account is a large body of interdisciplinary recent 
research bridging psychology, computational modeling, and the neurosciences.8 The 
study of the phenomenon of musical expectancy demonstrates successful ways to bridge 
theoretical / analytical, psychological, neurocognitive, and computational approaches in 
order to jointly advance our understanding of the foundations of the dynamic experience 
of musical listening.

Since the recent growth of literature on musical emotion, tension, and expectancy9, 
several extensive reviews of cognitive and computational approaches have been pub-
lished that explain the psychophysiological, neural, cognitive, and computational under-
pinnings of musical expectancy.10 Accordingly, the purpose of this contribution is not to 
reiterate a review of the cognitive bases of musical expectancy that is up to date with this 

3 Meyer 1967, 8 f.

4 Cf. Huron 2006.

5 Meyer 1956.

6 Cf. the recent issue of the International Journal of Psychophysiology, Todd / Schröger / Winkler 2012. 

7 Cf. Huron 2006; Koelsch 2012.

8 E. g., Koelsch 2010, 2012, 2014; Rohrmeier / Koelsch 2012; Farbood 2012; Tillmann 2005, 2012; 
Pearce / Wiggins 2012; Carrus / Pearce / Bhattacharya 2013; Egermann / Pearce / Wiggins / McAdams. 
2013; Hansen / Pearce 2014.

9 For example Juslin / Västfjäll 2008; Juslin / Sloboda 2010; Juslin 2013; Koelsch 2010; Lehne / Rohrmei-
er / Koelsch 2013.

10 Cf. Rohrmeier / Koelsch 2012; Huron 2006, 2012; Pearce / Rohrmeier 2012; Pearce / Wiggins 2012; 
Rohrmeier / Rebuschat 2012; Wiggins 2012a, 2012b.
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recent series of publications, but to introduce and to relate some of these notions and 
core underlying ideas to a more general music-theoretical audience in order to illustrate 
how interdisciplinary interactions between theoretical, computational, and cognitive ap-
proaches may be established.

This article is organized as follows: It first introduces core concepts to understand ex-
pectancy from a perspective of cognitive model building and discusses theoretic aspects 
of musical representation and constraints of well-defined models that have important 
implications for music-theoretical approaches. Departing from this background the arti-
cle discusses different types of models of expectancy, in particular local Markov models. 
Using the example of Markov models the article introduces the notions of overfitting 
and sparsity and illustrates that these notions, that often remain unaddressed in current 
music-analytical literature, are of fundamental relevance for music-theoretical descrip-
tions in general. The final part of the text analyzes the implications of hierarchical models 
for the concept of expectancy.

2. Relating Theoretical, Psychological and Computational Perspectives

Fundamentally, expectancy is a core cognitive process (i. e., a partial foundation of mu-
sical listening), and not a property of the musical score or of any other representation 
of musical structure (e. g., MIDI). Although they might be described in terms of music-
theoretical constructs, statements about musical expectancy always refer fundamentally 
to an act of listening associated with underlying neural / mental processes and not to 
certain structures. Furthermore, discussing expectancy in the context of music analysis 
implicitly (and inescapably) assumes an underlying cognitive model of listening and ex-
pectancy formation that operates in terms of the music-theoretical or music-analytical 
concepts used. Following on from discussions by Ian Cross, Geraint Wiggins and others, 
it is crucial to ensure that the foundations of music-theoretical concepts and arguments 
do not lie in vague forms of folk-psychology11, but are firmly rooted in psychological, 
neurocognitive, mathematical and computational foundations.

A description that specifies in detail how elements (derived from music-theoretical 
concepts and described by a well-defined language) are organized and combined to 
predict other elements constitutes a (more or less detailed) formal model, which is in 
essence analogous to the definition of a computational model in the sense of computing 
well-defined operations on symbolic representations.12 The notion of formal descriptions 
that are in essence computational is far older than the arrival of the first electronic com-
puters. Similarly the intent of a numerous (music-)theoretical descriptions and models is 
(implicitly) computational. Music analytical models, “pen-and-paper” models, syntactic 
models or (psychological) box models may be conceived of as computational descriptive 
or explanatory models that just—and crucially—differ with respect to the level of detail 

11 See Cross 1998 and also the discussions in Wiggins 2012a und 2012b.

12 It is important to note that a well-defined, formal computational model is by no means equivalent 
with a statistical corpus analysis in general.
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and consistency in which they are described or specified.13 The degree of detail in some 
music-theoretical approaches is indeed very close to computational modeling14, particu-
larly in cases that parallel some forms of syntactic analysis in linguistics.15 The potential 
for the development of a rich understanding of musical expectancy lies in close collabo-
ration between theoretical and computational approaches.16 The advantage of concise 
computational models (and their implementations) over mere theoretical accounts is 
manifold: The details are fleshed out in terms of the precise nature and representation 
of all elements involved, as well as the precise order and interaction of all processes in-
volved17; the process of implementation frequently leads to the identification of notable 
inconsistencies and redundancies in the theoretical account; the implementation allows 
one to verify whether the theoretical predictions are indeed predicted; and whether 
they are fulfilled or not, given evaluation criteria and evaluation with test cases. The fol-
lowing discussion examines some theoretical accounts of musical expectancy from this 
background.

3. Expectancy and Underlying Models  —  Basic Concepts

What, When, and Which Forms of Representation?

The following paragraphs introduce and exemplify a number of fundamental issues re-
garding musical expectancy. Consider a simple first simple example in the domain of 
harmony (see Fig. 1).

Figure 1. Harmonic implication and predic-
tion illustrated by two predictive contexts.

Figure 1 illustrates two simple cases of harmonic expectancies generated by different 
chords. One might state that a sixte ajoutée chord predicts a subsequent dominant (Fig. 1,

13 Compare Wiggins 2012a.

14 E. g., Caplin 1998; Tymozcko 2011.

15 For one of the rare instances of a music analytic approach in the spirit of linguistic analysis, see 
Polth 2001, apart from the well-known main traditions following Keiler 1978 and Lerdahl / Jackendoff 
1983. For an example of a recent detailed music-theoretical model based on a computational and 
linguistic framework, see Rohrmeier / Neuwirth in press.

16 For example Rohrmeier / Neuwirth in press; Eerola 2009.

17 Both requirements are not trivial at all. Compare, for instance, the numerous steps required by Fred 
Lerdahl and Ray Jackendoff’s Generative Theory of Tonal Music [henceforth GTTM] (Lerdahl / Ja-
ckendoff 1983) to instantiate a well-defined theory based on Schenkerian theory (cf. Schenker 
1935), and also the remarkable level of complexity encountered by Masatoshi Hamanaka et al. in 
a project to implement the GTTM (Hamanaka / Hirata / Tojo 2004, 2005, 2006, and 2007); or by 
Marsden and Smoliar to render a computationally tractable version of Schenkerian theory (Marsden 
2010; Smoliar 1980).
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left) or, more trivially, that a dominant-seventh chord predicts a major or minor chord 
the root of which is a fifth below (Fig. 1, right). However, these simple examples involve 
several implicit assumptions; first of all the ‘what’ question, with which most analysts 
are concerned. However, expectancy does also involve the ‘when’ aspect. Given a sixte 
ajoutée chord, when is the dominant expected to enter? At the next bar, the next beat, 
the (immediate) next event, at an unspecific point in the ‘near’ future? All of these op-
tions suggest different assumptions concerning the underlying model of expectancy: Is 
the element (the ‘what’) dependent on metrical structure, metrical hierarchy, rhythm, 
the mere sequence of events (i. e., independent of meter), or dependent on the following 
context (does the model allow for other elements to fall in between; and if so, which 
ones are defined as structurally important or unimportant)? It is important to note that 
any answer a music theorist may give inescapably involves an underlying theoretical 
choice concerning such choices of representation even if it may not be made explicit. 
Every account of expectancy relies on a well-defined model of expectancy. Crucially, if 
no model is explicitly defined, its parameters are covert in the analytical process and the 
account is prone to be incomplete, inconsistent or ill-defined. Each of the options listed 
above (and their combinations) imply different expectancy models with respect to the 
postulated components and their interaction.

Turning back to the ‘what’ aspect, does expectancy formation make predictions 
about the chordal root (C), the chord type (a major chord on C: root and type), the 
functional category (a dominant), a specific instance of the chord or even a specific voic-
ing? (It is important to keep in mind here that this description of expectancy concerns 
listening, not the score.) As before, there is no natural, a priori ‘right’ answer to this, and 
no ‘right’ answer that can be discovered through reflection; the answer depends on the 
underlying model and involves a decision with respect to the level of representation, the 
fine-grained or rough resolution, and, more specifically, the purpose of the model. Fur-
ther, are the input and output of the model of the same type? Does a dominant-seventh 
chord on G imply a continuation with a C root, a generic chord, or a specific C-major 
chord? At one theoretical level, it may be appropriate to say that sixte-ajoutée chords 
imply dominant-seventh sonorities or a dominant function, while at another level more 
detail may be required. Purely analytical or theoretical approaches require careful de-
sign in order to be globally consistent with respect to the level of representation. These 
points illustrate the role of the chosen representation, the components of the model, and 
the interaction between these components.

One frequent counter-argument raised against cognitive or computational models is 
that they involve accounts of music that are overly naïve or simplistic, lack complexity, or 
are dismissive of important context or musical (philological or music-theoretical) details. 
While it is always possible to include more detail or raise the level of abstraction, there 
is no a priori foundation of a ‘right’ level of analytical detail (or the ‘best model’) without 
reference to a specific purpose or evaluation criterion depending on the purpose.

Depending on the evaluation criterion there is also a trade-off between simplicity 
and accuracy as well as the problem of overfitting (see below). After all, accounts with 
greater levels of detail are not necessarily better and may gain only little improvement 
for the price of massive additional complexity, or they may even turn out with worse de-
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scriptive / predictive power, while (seemingly) simple models may have strong predictive 
power. Highly complex models that account for a large number of different factors / com-
ponents may further be prone to design mistakes and redundancies when specifying 
their interaction and be difficult to interpret (which interactions did lead to the observed 
results?).

Like Borges’s famous “map” “representing” its territory at a 1:1 scale18, excessive mu-
sical detail may impair the interpretability and the use of a music-theoretical account. In 
the spirit of Borges’s “Del rigor en la ciencia” (“On Exactitude in Science”), imagine the 
final establishment of an ideal type of a comprehensive 6000-page encyclopedia (any 
resemblance to real projects or publications purely coincidental) with a finely detailed 
‘final’ description of sonata form classified by an abundantly rich variety of historically, 
philologically and systematically relevant distinctions and parameters, organized into 35 
types and subtypes, differentiated in time by single year, in place by shire, organized by 
the causal web of mutual influence, amongst many other pieces of information. What 
would a pattern of interaction between type 3, 8 and 12 in two locations and between 
1781, 1785 and 1787 mean—once the effort is comprehensively pursued to excavate 
such a relation—and what would it entail with respect to an account of expectancy of 
form? What generalizable insight might be drawn from a description with excessive level 
of detail? The first step to ‘analyze’ such a comprehensive account (say, in the case of 
teaching it to students or to yourself) would be one of simplification, in other words com-
ing up with a map for the map, i. e. a simple model to cut a swath through the thicket. 
One instance of a fruitful outcome of the tension between theoretical complexity and 
stepwise simplification in consequence of theoretical and empirical explorations is found 
in the recent history of music cognition in terms of the successive simplification of Eugene 
Narmour’s implication-realization theory that led to fundamental insights into the nature 
of musical expectancy that are also informative from a music-theoretical perspective.19

Incorporating Context-Dependency

Expectancy is further dependent on various kinds of ‘context’: The sixte ajoutée chord 
or the dominant-seventh chord (Fig. 1) may entail different predictions depending on 
the underlying tonal or stylistic context. The dominant-seventh chord suggests a much 
greater variety of possible continuations in works by Schumann or Liszt than in works by 
Vivaldi, Telemann, or Handel, and may exhibit a much weaker implicative tendency in 
the context of a Blues scheme. Another common example for style-dependent expec-
tancy is constituted by the added sixth major (or minor) chord, which clearly invokes 
a subdominant function in the eighteenth century while it may function as a tonic for 
composers like Claude Debussy or Duke Ellington. This aspect of the overarching (stylis-
tic) context is an implicit or covert assumption in a model of expectancy. How can this 
context be accounted for in a model?

18 Borges 1996.

19 See Narmour 1990, 1991; Schellenberg 1997; Krumhansl 1995; Eerola / Louhivuori / Lebaka 2009; 
Eerola 2003; Krumhansl / Louhivuori / Toiviainen / Järvinen / Eerola 1999; Krumhansl / Toivanen / Eero-
la / Toiviainen / Järvinen / Louhivuori 2000; Hippel / Huron 2000; Huron 2006.
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One way would be to posit a different model for each case: one for common-prac-
tice music, one for Jazz, one for Rock, one for the Classical Style, one for Schumann, one 
for Handel, one for early Beethoven, one for late Beethoven, one for Bach’s Partitas, one 
for Beethoven’s “Waldstein” sonata, etc. While it may be insightful to study differences 
or similarities between different stylistic models, this list points at the core distinction 
between the type of a model and its parameters.

Generally, the definition of a model distinguishes between its parameters and the 
independent structure of the model. The parameters represent the information that the 
model operates on (for instance the information encoded in a Markovian transition ma-
trix, that may represent style-specific knowledge about, e. g., chord transitions). While 
the parameters may be different for each of the above cases, there may be a single type 
of underlying model of expectancy that is independent of its parameters (such as a 
Markov model, e. g., a table of usual root progressions in the sense of Piston, or a tree 
structure in the sense of hierarchical models). In the case of music-analytical description 
of features that govern a certain style, it may be beneficial to draw clear distinctions be-
tween the model structure and its parameters. Once there is a clear distinction between 
a model and its parameters, one may examine how the parameters of the model may be 
inferred from data given. Recent computational models commonly involve methods to 
infer / learn the parameters from given examples (training data) such that the parameters 
do not need to be specified by hand but may be flexibly adapted to the ecological prop-
erties of the data / corpus it operates on.

The clear definition of a model of expectancy, its parameters and the inference pro-
cess may be closely related to an overarching notion of (an aspect of) musical compe-
tence.20 If one intends the model to represent cognitively relevant representations that 
govern musical competence and assumes that the corresponding processes are shared 
across the members of a community, the unity of the model, its parameter space in con-
junction with its acquisition process as well as the corresponding stabilized structures of 
the music of the community characterize the intersubjectively shared medium21 of musi-
cal communication (e. g., Western tonality, Middle Eastern maqa-m, or the North Indian 
ra-ga).22 This understanding makes it possible to undermine purely subjectivist or solipsist 
accounts of aesthetics or musical forms of private languages by a cognitively founded ac-
count of intersubjectivity.23 From this cognitive perspective arguments about subjectivity 
of musical listening (an imaginary overly post-structuralist critic may insist to hear iii to be 
implied by V rather than I which in turn ‘sounds irregular’) may point towards questions 
that are decidable on an empirical basis: Assuming that a Markov model (see below) is 
a fair model of musical competence and musical expectancy, given the Markov model 

20 Cf. Stevens / Byron 2009; Rohrmeier / Rebuschat 2012.

21 See the detailed account by Polth 2001.

22 Communication arises through emergence, autopoietic stabilization and reproduction. Individual 
competence is a product of interactive social and cognitive adaptation processes. See also related 
arguments by Luhmann 1992, 2000, or Polth 2001.

23 E. g., Chomsky 1980; Davidson 1989, 2001; DeBellis 2009; Swain 1994; Temperley 1999, 2001, 
2009; Wittgenstein 1953.
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and its parameters learned from a corpus of common-practice tonal music the context of 
a V chord predicts a I chord as the most likely continuation.24

The Choice of the Type of Model

Following up on the previous account of a model, one core foundation underlying ana-
lytical approaches to musical expectancy concerns the structure of the model, i. e. mak-
ing explicit how expectancy is derived. One simple way is to define a model based on 
statistical frequency of occurrence (as above): Find instances of ‘V–x’ in the chosen musi-
cal material (the ‘corpus’), count their number, count the instances of ‘V–I’ among them, 
and divide the latter by the former to arrive at an estimate of the predictive probability 
based on the frequency counts. This is not far from what Walter Piston’s early account 
of the table of common root-progressions (Fig. 2) may express, if it were specified with 
sufficient level of detail and with explicit accounts of the covert underlying assumptions.

Table of usual root progressions

I is followed by IV or V, sometimes by VI, less often by II or III.

II is followed by V, sometimes by VI, VI, less often by I or III.

III is followed by VI, sometimes by IV, less often by I, II or V.

IV is followed by V, sometimes by I or II, less often by III or VI.

V is followed by I, sometimes by VI or IV, less often by III or II.

VI is followed by II, V, sometimes by III or IV, less often by I.

VII is followed by III, sometimes by I.

Figure 2. Walter Piston’s table of usual root progressions (1948).25 The table constitutes an early 
instance of an informal Markov model of root progressions based on musical experience and 
intuition (or ‘intuitive statistics’).

Note that the notion of such a Markov model rests on the assumption that there is an 
(accessible) level of representation that allows for comparison and counting (e. g., how 
to count pitch slides or notes with slight differences in intonation?) and that an estimate 
of the predicted next event can be determined by frequency counts. The account is 
independent of style and musical representation (i. e., the choice of building block): It 
is sufficiently general to be applied to melody, harmony, sequences of drum strokes or 
North Indian r ga. Crucially, the above specification of the Markov model contains an-
other underlying assumption: that only the immediate context but no larger context26 is 
relevant for expectancy (since prediction is only computed in terms of one predictive 

24 Moreover, computational models that infer their parameters from exposure are capable of expres-
sing individual variation.

25 Piston 1948.

26 Note that, here, ‘context’ refers to the sequence musical events preceding the predicted event.
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event, any event preceding this context is not taken into account and hence irrelevant to 
the model; models that incorporate nonlocal dependencies are discussed below). This 
model is called a Markov model, and the assumption about the relevant context the 
Markov assumption, given in mathematical terms as:

In words: The probability of any event c at the position i + 1 given a context e ranging 
from the beginning of the piece to position i (written as ) is well approximated by the 
probability of c, given just the smaller context of the element . Such models, which 
have been implemented from the 1950s onwards27, are widespread and still frequently 
employed today.28 A recent example of a corpus study of Bach’s chorales provides one 
possible empirical implementation of a heuristic that approximates harmonic counts and 
provides an empirical estimate:29 V–I is roughly seven times more likely than V–vi. The 
difference is that Piston’s judgments (Fig. 2) about frequency are intuitive30 (‘regular’ vs. 
‘sometimes’ without specification of whether ‘sometimes’ has roughly the same mean-
ing across different rows), while the latter are empirical estimates and based on both a 
corpus and a detailed replicable and comparable process.31

Further, well-defined music-theoretical accounts of expectancy such as Markov 
models lend themselves to empirical testing and evaluation providing further insight into 
the process of expectancy formation. For instance, the characterization of harmonic ex-
pectancy by progression tables has been tested empirically in studies using probe chord 
and harmonic continuation paradigms, leading to partial confirmation and partial revi-
sion of the theoretical predictions made by Piston.32

Different levels of musical expectation

So far, a model of expectancy has been characterized as the combination of the model 
structure and its (potentially learned or acquired) parameters from which predictions are 
derived. However, in an endeavor to model expectancy in listening (or interactive cog-
nitive tasks such as improvising), different sources of expectancy have to be accounted 
for: There are differences between expectations based on our general acquired musical 
competence and expectations based on particular features of the current piece we are 

27 See the review by Pearce / Wiggins 2012.

28 Cf. for example Pearce 2005; Conklin 2013; Pearce / Wiggins 2006, 2012; Temperley / de Clercq 
2013; Tymoczko 2003.

29 See Rohrmeier / Cross 2008; Rohrmeier 2005; see also Tymoczko 2003 for similar work, and 
Hedges / Rohrmeier 2011 for an empirical exploration of Rameau’s theory of the basse fondamentale 
(Rameau 1722).

30 Neuwirth 2013 refers to these estimations common in the humanities as ‘intuitive statistics.’

31 Even though the method of deriving at such estimates may be debatable as are decisions of human 
analysts and may be revised by improved methods, the computed numbers are internally consistent 
by being computed using the same algorithm whereas human analyses of such a large corpus may 
be prone to inconsistencies across different pieces.

32 See Bharucha / Krumhansl 1983; Krumhansl 1990; Schmuckler 1989.
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listening to or interacting with. Accordingly, a distinction is required between knowledge 
driven and online expectancies (or long-term and short-term models according to the 
terminology by Pearce et al.33). These types of expectancy formation may interfere (see 
below).34

Another distinction has to be made regarding levels of expectancy. The cognitive 
musicology literature commonly assumes three levels of expectancy: data-driven, ve-
ridical and schematic / knowledge driven.35 Data-driven predictions characterize simple 
musical processes that may not require a foundation in acquisition: an ascending scale, 
for example, or a simple pattern such as note repetition or alternation.36 One may fur-
ther classify accounts of musical processing and prediction based on purely sensory 
processing as forms of knowledge-free data-driven sources of expectancy.37 Veridical 
expectancy refers to cases in which the musical source itself (the piece) is known so that 
predictions about upcoming events are based on prior knowledge of the (presumed) true 
source (Fig. 3). Finally, expectancy formation that is neither based on simple patterns 
nor on prior veridic knowledge of a piece may rely on previously acquired style-specific 
knowledge or schemata (musical competence), e. g. of harmony or voice leading. The 
sixte-ajoutée chord above (Fig. 1) constitutes an example of knowledge-driven expectan-
cy acquired by previous experience of tonal music. Crucially, knowledge-driven forms 
of expectancy are bound to an underlying process of expectancy generation (such as a 
Markov model or a tree-based model) and a complementary process of knowledge infer-
ence and acquisition (implicit learning).38

Figure 3. Example of veridical expectancy

The Problems of Overfitting and Sparsity

It is a commonplace in computational modeling that descriptions and models do not 
necessarily get better by adding more information. One example of a study modeling 
Jazz harmony shall illustrate this.39 Using Markovian methodologies similar to the ones 
introduced above, the study implemented n-gram models (amongst others) for the pre-
diction of chord sequences from a large Jazz corpus and compared the performance of 

33 Pearce / Wiggins 2012, Conklin / Witten 1995.

34 See also similar distinctions by Huron 2006; Margulis 2007.

35 For this distinction, see Bharucha 1987; Eerola 2003; Huron 2006.

36 Already low-level sensory neural processing is capable of dealing with such regularities without 
requiring higher-order knowledge-driven processes, see Koelsch 2012.

37 See, e. g., Parncutt 1989; Leman 1997.

38 Rohrmeier / Rebuschat 2012.

39 Rohrmeier / Graepel 2012.
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models of different context length: The prediction of the next chord was based on mere 
single-chord frequencies (1-gram model), conditioned on the previous chord (2-gram 
model), the two previous chords (3-gram model), or the three or four previous chords 
(4-gram and 5-gram model). These n-gram models were evaluated using a large corpus 
of harmonic lead-sheet annotations of 1600 Jazz standards.40 Furthermore, the study 
compared two forms of evaluation: In the standard case, the corpus of Jazz standards 
was split into two parts, one of which was used for model training (i. e., for estimating 
the probability tables used for prediction as outlined above) and one for evaluating each 
model; in the second veridical case, the training set contained the evaluation set.41 Figure 
4 displays the performance of the different n-gram models under standard and veridical 
conditions.

Figure 4. Performance of predictive n-gram models of harmony using different context length42

40 Haas / Veltkamp / Wiering 2008.

41 Although veridical evaluation is avoided in modern computational modeling because of the prob-
lems discussed in the following paragraphs, this case was included to exemplify the effect sizes of 
overfitting.

42 Reprinted from Rohrmeier / Graepel 2012.
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As the figure illustrates, the n-gram models of the Jazz corpus reach an optimal perfor-
mance level for n = 2 or n = 3. This means that a context of one or two previous chords is 
optimal for predicting the next chord, whereas a model with a larger context possesses 
lower predictive power. Hence, more information incorporated into the model does not 
necessarily improve its performance. To the contrary, larger contexts here contain too 
many chord sequences specific to individual pieces or individual progressions and thus 
are not generalizable across a larger set of cases.

A second observation can be made comparing the performance for the veridical vs. 
the standard case. In the veridical case, in which the test set is included in the training 
set from which the model parameters are estimated, the performance continuously im-
proves with increasing context length. For the cases of 4- and 5-grams, predictions for 
chord contexts of three and four chords are compared. These chord progressions are 
highly individual; since the models have incorporated all the test cases as well, they are 
good at predicting individual progressions in the test cases. However, this does not entail 
that these are ‘better’ models: They would generalize poorly similar when confronted 
with novel progressions as the example of the same models in the non-veridical case 
illustrates. Although they incorporate a large amount of piece-specific knowledge, by 
no means does this result in neither improved general harmonic knowledge, nor does 
it improve the model’s capacity for predicting harmonic progressions. This case consti-
tutes an example in which more detailed harmonic knowledge is even detrimental for a 
description of harmony with generalized predictive power.43

This result is not limited to harmony and transfers to other musical structures. For 
instance, Marcus Pearce and Geraint Wiggins report a similar finding for the modeling 
of melodic prediction with n-gram models.44 This problem is referred to in the computer 
science literature as the ‘overfitting problem.’ Some models may be over-trained with too 
much information that does not improve, but rather impairs the description / the inferred 
knowledge of the structures.

Another related issue concerns the contrasting common problem of sparsity: Even 
though a Markov or n-gram model may be trained with data from a large number of mu-
sical examples, there is still a high likelihood that an application of the model to musical 
prediction may encounter a context the training materials did not contain and the model 
has no information about. Given the definition of the Markov model above, it is impossi-
ble to derive a prediction for the next event if there is not a single sample case (e. g., how 
to predict the continuation of [U V W …] if there is no instance of [V W] in the reference 
data?). This problem occurs frequently in computational modeling45 and bears theoretical 
implications for music theory (see below). Commonly, Markov or n-gram models involve 
specific techniques of ‘zero-escape methods’ and ‘smoothing’ to avoid such cases.46

43 Note, however, that there are some models that are less prone to problems overfitting, such as the 
results of modeling chord progressions with Hidden Markov Models (Rabiner 1989) as reported in 
the same paper by Rohrmeier / Graepel 2012.

44 Pearce / Wiggins 2004.

45 E. g., Manning / Schütze 1999; Pearce / Wiggins 2004.
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The phenomenon of sparsity, related to the ‘Zipf distribution,’ is a common property 
of the distribution of events across a large range of natural phenomena, including lan-
guage and music.47 Briefly construed, it implies that there is a small number of items that 
occur very frequently and account for most of the domain while a large number of items 
occurs highly infrequently48 (frequency approximates inverse rank). The relevance of this 
distribution for music has been demonstrated for the cases of pitch and harmony.49

Zipf’s law relates in two ways to modeling as well as theoretical descriptions: On 
the one hand, it implies that fair models or descriptions may be achieved employing a 
small number of rules (capturing the rules governing the most frequent items). On the 
other hand, however, a complete or comprehensive description requires an exponential 
number of rules and exponential effort; the accurate completion of this is, without the 
aid of computational analysis, a virtually intractable task for human analytic scholarship 
and even with computational methods, a comprehensive description would hold little 
informational value. Therefore, the problems of overfitting, sparsity and Zipf’s law define 
crucial constraints for descriptions in music theory: Style descriptions (say of Handel’s 
suites, or a structure like sonata form in general) do not benefit from extensive and 
indefinite addition of detail and description —even if the Sisyphean task of a compre-
hensive description were tractable and possible for a particular repertoire in decades of 
analytical scholarship. This problem is further aggravated because the characterization 
of a musical style frequently deals with corpora that are historical and hence complete. 
Numerous music-theoretical approaches therefore operate in ways that are analogous 
to the case of ‘veridic’ modeling described above. Accordingly, such approaches face 
the problem of having to draw a careful line between meaningful description and gen-
eralization and problematic overfitting by adding excessive details that do not generalize 
and merely describe random artifacts and coincidences in the corpus—analogous to the 
case of veridical overfitting described above. The method of withholding a set of data 
that is not used for theory building and only for theory evaluation constitutes a core and 
obligatory standard in computational and statistical modeling50, yet it is still almost en-
tirely ignored in the standards of music-theoretical practice. Reflections on the nature of 
description, generalizability and model building may suggest the use of such standards 
of in future music-theoretical endeavors.

To conclude and to tap into the spirit of David Huron’s, Michael Cuthbert’s research 
paradigms (amongst others) as well as Ian Quinn’s reflection of musicology in the age of 
Big Data and Digital Humanities, music theoretical scholarship of the 21st century may 

46 These techniques attribute a small default value to all possible yet unobserved cases and/or use 
more frequent and shorter contexts to derive predictions; see Manning / Schütze 1999; Pearce / Wig-
gins 2004 for a detailed discussion and comparison of such techniques.

47 Zipf 1935, 1949. See, for instance, Piantodosi (in press) for a recent discussion.

48 Frequency is approximately proportional to the inverse rank, i. e. 

 (with constants a, b; a > 0) according to the accounts by Zipf 1936 (for b=0) and the refinement by 
Mandelbrot 1953 (for b > 0).

49 Manaris / Romero / Machado / Krehbiel / Hirzel / Pharr / Davis 2005; Zanette 2006; Rohrmeier 2005; 
Rohrmeier / Cross 2008; Voss / Clarke 1975, 1978.

50 E. g., Manning / Schütze 1999.
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draw great benefit from close interdisciplinary collaboration and from taking on board a 
number of the issues raised above in theory building. In particular, this concerns aspects 
such as precise, formal definitions of concepts, operations, methods and notation, mak-
ing explicit underlying assumptions, grounding theoretical concepts and their operation-
alization in firm psychological, cognitive, mathematical and computational foundations, 
defining testable hypotheses and evaluation criteria, and evaluating theoretically derived 
hypotheses that concern corpora or ways of listening in terms of computational or psy-
chological research.51

4. Local and Hierarchical Structure

The discussion above has largely focused on only one specific type of expectancy mod-
els, namely local models (such as Markov or n-gram models, and to some extent, regular 
grammars) which share the common assumption that event prediction is only character-
ized by the local context, consisting of the immediately preceding events. However, 
a large number of music-theoretical models such as those proposed by Schenker or 
more the strictly formalized approaches of Alan Keiler, Fred Lerdahl and Ray Jackend-
off (GTTM), Eugene Narmour, Mark Steedman, Martin Rohrmeier, and Jonah Katz and 
David Pesetsky52, take as their basis hierarchical principles of musical structure, which 
formally exceed the expressive power of local models and postulate both proximate 
and distal realizations of implications.53 With respect to music expectancy, however, 
nonlocal models come packed with a number of implications that are not self-evident, 
outlined below.

Hierarchical Structure and Expectancy

One linguistic example will first illustrate the issues involved in hierarchical process-
ing before turning back to music. Speaking about a man, which word or word class is 
predicted by “the old …”? One might say: “man” or a noun. The continuation, however, 
is: “the old and …”. Was the prediction “man” violated or unfulfilled? What is the new 
prediction? Is it “humble” (or any adjective) or is it still “man”? In some sense, it is both. 
Continuing as “the old and humble …”, one may now be aware that the prediction may 
be “man” yet also “but”, for instance: “the old and humble, but …” or “the old and 
humble, but frequently … man” etc. A merely local account (i. e., an account that treats 
predictions as strictly local) is insufficient for such a case. For instance, arriving at “but 
frequently” a trigram model would have lost the context of “the …” predicting a noun 
and may, in contrast, predict the continuation “but frequently you [will]”. A complex 
expectancy structure like the one illustrated by the present example involves nonlocal 

51 Quinn 2014; Huron 1999; Wiggins 2012; Pearce / Rohrmeier 2012; See also, e. g., the Music21 plat-
form by Michael Cuthbert and its endeavor to provide a novel unified platform for computational 
research in musicology and music theory (Cuthbert / Ariza 2010).

52 Schenker 1935; Keiler 1978; Lerdahl / Jackendoff 1983; Narmour 1992, 1999; Steedman 1984, 1996; 
Rohrmeier 2007a, 2007b, 2011; Katz / Pesetsky, online draft of 2011.

53 See Temperley 2011 for a contrasting viewpoint regarding the relevance of nonlocal models.
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dependencies and predictions that may be interrupted by another structure. This is il-
lustrated by the dependency structure represented in Figure 5. This example illustrates 
that cases like this require an account that is able to capture such hierarchical, potentially 
nested dependencies, for instance, by employing representations of a flexible number of 
simultaneous instances of predictions at different local or nonlocal levels.

The

✏✏
old

✏✏
and

✏✏
humble,

✏✏
but

✏✏
frequently

✏✏
. . .

✏✏
man

1

Figure 5. Nested syntactic patterns of expectancy

This case bears a musical analogue. Figure 6 illustrates several ways in which local and 
nonlocal types of expectancy are linked together. First, there are several local implica-
tions: ii6/5 (m. 2) implying V (m. 3), V (mm. 3, 5, and 7) implying I, VI6/4 implying VI5/3 (m. 
4), V6/4 implying V5/3 (m. 5), I7/4/2 implying I (m. 8; note that this latter implication is con-
text-dependent; in a neutral, non-cadential context the implication pattern would more 
likely be I7/4/2–V6/5). All of these local implications are immediately met except for the V–I 
implication, which is not (immediately!) met all three times. Note further that implication 
and realization pairs are tightly linked by the fact that realization events and new implica-
tive events are combined: e. g., the V chord in m. 3, which is the expected realization of 
the ii6/5 in m. 2, in turn sets up a new expectation. The expectation set up by the V chord 
(m. 3, 5) is violated twice by the same V–VI6/4 deceptive progression (m. 4, 6; note that 
the second occurrence establishes a stronger implication due to the doubling of the bass 
note of V in m. 5). In turn the sequence VI6/4–VI5/3–V6/4–V5/3 constitutes a chain of mutual 
implication-realization patterns (combined with a 6–5–6–5 voice-leading pattern); this 
chain leads to the reestablishment of the V harmony and raises again the previously 
unfulfilled expectation of a I sonority, only to interrupt it once again – constituting a 
“one-more-time pattern.”54 The third time, V proceeds to V7, demarcating the end of the 
eight-bar phrase, yet not resolving into I immediately despite the right bass note at m. 8. 
Accordingly, the final chord is locally implied by the V7 chord at the end of m. 7 while 
being interrupted by an even more local implication of the I7/4/2. This constitutes a form of 
two nested implications. Moreover, the three V chords may be regarded at a higher level 
as a prolongation of an overarching V function that sets up a strong final V–I implication 
by virtue of being interrupted and reestablished twice by deceptive progressions, thus 
reinforcing a chain of implications towards the final V. In this respect the nested implica-
tions of the musical example are analogous to the linguistic example above. It is impor-
tant not to neglect the fact that the first two chords establish the key of F minor almost 
unambiguously due to their scale membership55 and thus strengthen the V–I expectation. 

54 See Schmalfeldt 1992.

55 Note that already the first F-minor chord is sufficient for almost unambiguously establishing the key of 
F minor. An n-gram model with a padding symbol marking initial silence or a Bayesian model would 
support this result in straightforward ways based on the distribution of piece beginnings in a corpus.
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Furthermore, the I chord may be analyzed as setting up an expectation itself in terms 
of its implied tonic return at the end of the period. Altogether this example motivates a 
representation of the different implication-realization patterns or nested expectancies as 
set up in the example of this sonata movement. Turning back to the linguistic example, 
the I and V chords set up nonlocal implications that are maintained and interrupted by 
several other patterns of implication and realization until they are realized.
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Figure 6. Wolfgang Amadé Mozart, Piano Sonata F-Major, KV 280, second movement, mm. 1–8

Such hierarchically nested patterns of expectancy involve both local and nonlocal com-
ponents.56 Note that, for instance, in Figure 7 the arrows are organized in a way that some 
may be superordinate to two or more others.57 Such a hierarchical form of organization 
entails a tree-based representation. This formalization of the hierarchical understand-
ing of musical dependency and expectancy is useful for casting precise and testable 
predictions that may not be straightforward under an informal notion of hierarchicality. 
Specifically, it predicts that crossed patterns of implication-realization events such as 
those in Figure 8 may not occur.58 As outlined before, the requirement for processing 
(and listening to) such a structure is the ability to keep more than one open implication 
actively in mind, while other intervening events and patterns of implication, realization, 
and prolongation occur.

Once a hierarchical model of music is involved, the notion of expectancy becomes 
less straightforward (as outlined in the previous example). One cannot easily predict the 
next event any more because an interruption of a current implication may occur at a 
large number of points. Consequently, to say that a I–IV–V progression implies a I now 

56 The latter could be understood as a special case of nonlocal dependencies with no intervening 
material; hence a process that is able to capture nonlocal dependencies will naturally also capture 
local dependencies.

57 Note that prolongation works in close analogy to coordination in language (the “and” as used abo-
ve), a claim that has been made already by Mark Steedman (Steedman 1984, 1996).

58 The occurrence of such crossed patterns of dependency would provide evidence for the necessity 
of an even more complex model of dependency structure and associated forms of expectancy.
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entails the awareness that the implied I may occur several measures later after a potenti-
ally large series of multiple and recursive interruptions. Examples of such structures may 
be found in the analysis of deceptive cadences and half cadences amongst other phe-
nomena.59 In this context, a recent empirical study provides neural evidence that non-
musicians process original and modified versions of two two-part phrases from Bach’s 
chorales differently, depending on whether the second part returned to the initial key 

59 See Rohrmeier / Neuwirth in press.

Figure 7. Visualization of the nested patterns of expectancy in the Mozart phrase from Figure 6

Figure 8. Crossing patterns of expectancy 
that are predicted to be impossible in 
musical contexts
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of the entire phrase or not after a (comparably long) intermitting modulation.60 Such a 
case of nonlocal prediction provides a prototypical example of predictive processes that 
cannot parsimoniously be expressed by virtue of plain local, n-gram or Markov models 
and suggests that we possess and employ capacities of nonlocal processing in music, for 
the least supplementing local processing61).

Expectancy Violation and Revision in Hierarchical Models

The example above illustrates that the notions of expectancy fulfillment and expectancy 
violation need to be reconsidered when taking into account a hierarchical model of 
structural organization: Returning to the sentence “the old and humble, but frequently … 
man,” the occurrences of “but,” “and,” “old,” or “frequently” might further be regarded 
as instances of expectancy violation in the context of local predictions. Assuming that 
the ongoing listening / parsing process maintains an updated version of the best possible 
analysis62, the time course of analyzing the sentence involves that, having expected the 
word “man” to close the noun phrase (NP), the parser is required to adapt the inferred 
tree model of the NP to accommodate for the newly encountered information. In terms 
of the predicted tree structure, encountering a less probable, yet grammatically correct 
option like “but” forces another adaption to the sentence model during online percep-
tion. This is an instance of an expectancy violation due to a less probable but grammati-
cal event—a case contrasting the violation through an ungrammatical event such as “the 
old and but” where there is no structural recovery possible.

In addition, the nested dependency structure requires that all parts are fulfilled: “the 
old and man” strikes one as ungrammatical even though the nonlocal structural predic-
tive dependency is fulfilled. An analogous musical example of this may be found in the 
following common-practice harmonic sequences:

 – (1*) I V ii6/5 I

 – (2*) I V ii6/5 V6/4 I

In both cases, the two overarching implications are fulfilled, but the local contexts in-
volve open implicative dependencies (ii6/5 or V6/4) that require closure for the sequence 
to be regular. An analogous example could be constructed for the respective nonlocal 
dependencies.

 – (3*) I […] ii V || vi iii vi V/iii iii

 – (4) I […] ii V || vi iii vi V I

60 Koelsch / Rohrmeier / Torrecuso / Jentschke 2013; see also the preliminary results by Wool-
house / Cross / Horton 2006.

61 However, a mechanism that is able to instantiate nested predictive dependencies as the ones descri-
bed above, is sufficiently powerful to deal with local predictions without requiring a separate ‘local 
processing module.’

62 See Jackendoff 1991 for a discussion of this in the case of musical parsing.
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Assuming that these two examples would occur constituting the context of a complete 
8-measure period, their difference illustrates the style-specific necessity of the tonic re-
turn after a progression to V and particularly after a non-tonic continuation in the second 
half of the phrase in order to fulfill the nested predictive dependencies—just as illustrated 
by the empirical study mentioned in the previous paragraph.63

An understanding of expectancy in terms of hierarchical structure and multiple (re-
cursively) nested predictive dependency relationships bears further consequences for 
the concept of expectancy violation: While expectancy and its violation is a mere matter 
of degrees of continuous probability values for a local model, patterns of expectancy 
receive a different interpretation in a hierarchical account. Common musical patterns 
such deceptive cadences, one-more time patterns, interruption, etc., may be accounted 
for in terms of overarching nonlocal dependencies. Accordingly, what may appear to a 
local model as a local expectancy violation, may resolve into a regular analysis under 
the perspective of a hierarchical account. In these terms, an expectancy violation may 
likely be a local interruption of an established predictive event, which delays or defers 
the realization of the predicted event and in turn sets up a new nested predictive context 
(analogous to “but frequently…” in the language example). A very simple example of this 
is provided by the following harmonic progression:

 – (5) I ii V [ vi ii V ] I

This sequence sets up a V–I implication which is interrupted by a deceptive progres-
sion V–vi which in turn initiates two further predictive dependencies to reestablish (and 
potentially strengthen) the predictive effect of the initial dominant context (as indicated 
by the brackets). In the tree analysis vi would not be merged with the preceding V, but 
analyzed as subordinated to ii and hence be merged with ii. This understanding may be 
useful to recast a variety of deceptive cadences in terms of recursively embedded predic-
tive dependencies rather than understanding them solely in local terms of ‘regular’ and 
‘less regular’ continuations of a dominant.64

Two Case Studies of Expectancy Violation and Revision

The hierarchical understanding of expectancy outlined above further entails a link be-
tween expectancy violation and revision. As argued above, the update of the current 
tree based on the previous context in an instance of Jackendoff’s idealized parser may 
require smaller or larger adaptations of the tree structure based on newly encountered 
unexpected events. Within the framework of a recursive grammar model such updates 
of the tree structure may imply further change and revision of previously heard structure.

63 Koelsch / Rohrmeier / Torrecuso / Jentschke 2013.

64 See Rohrmeier / Neuwirth in press for a detailed discussion of this analysis of deceptive and other 
types of cadences.
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Figure 9. Ludwig van Beethoven, Symphony I, C Major, op. 21, first movement, mm. 1–13

Two well-known examples illustrate this, the beginning of Ludwig van Beethoven’s First 
Symphony (Fig. 9) and the beginning of Robert Schumann’s lied “Am leuchtenden Som-
mermorgen” (Fig. 10).65 The beginning of Beethoven’s symphony initially implies the key 
of F major by an unusual initial, dynamically reinforced dominant-seventh chord (m. 1). 
This tonal context is immediately revised to the key of C major by virtue of a deceptive 
progression (V–vi, m. 2). This weakly established C-major key is in turn revised by the 
subsequent seventh chord on D setting up a prediction for a (local) tonic G-major chord 
(m. 3). Finally this G-major context is functionally revised to be the dominant of the C-
major key (mm. 4–7), which turns out to be underlying key of the entire passage. This 
passage can be interpreted in close analogy to linguistic ‘garden path’ phenomena such 
as “The horse raced past the barn fell” (which forces a parse of “The horse [(that) raced 
past the barn] fell” rather than “[The horse raced past the barn] fell”, which requires the 
parser to backtrack and revise the entire constituent structure after encountering the 
word “fell”). In analogy, the remarkable feature of this segment is that the expectancy vi-
olations trigger a reparse and revision of the underlying key and the entire set of assigned 
scale degrees and tonal functions three times for three different points of tonal reference.

A phenomenon like this suggests that the process of expectancy formation is a by-
product of predictive generative parsing and that expectancy violations inform an in-
ternal update and revision process of the parser (the likely candidate parse(s) is / are 
generated on the fly and interactively matched with the incoming stream of events to 
update the best current candidate parse(s)). In his discussion of this phenomenon, Ray 
Jackendoff asserts a similar dynamic parsing process for rhythmic or metrical ambigui-
ties.66 Finally, it is important to note in this context that a mere plain local Markovian 
account of musical processing (as outlined above) is in principle incapable of capturing 
such features relating to a parsing process since it does by definition not incorporate a 
representation of underlying deep structure that may be revised on the fly.

Schumann’s lied “Am leuchtenden Sommermorgen” (Fig. 10) illustrates an additional 
feature of expectancy formation, expectancy violation, and parsing by predictive proces-
sing. The opening of the piece creates a strong surprise by continuing what sounds like a 
dominant-seventh chord with a 6-4 suspension and a semitone descent in the bass. The 
strong effect is caused by the sudden effort required by the parsing process to revise the 

65 Agawu 1994 discusses these examples in the context of musical ambiguity.

66 Jackendoff 1991; see also Temperley 2001.
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dominant-seventh tonic expectancy retrospectively towards an unlikely German sixth, a 
precedential V6/4 progression in a different key (B vs. Bb). As in the previous example the 
parsing process is forced to reinterpret both tonal function and key structure. The formal 
preconditions of this strong effect are two-fold: Firstly, within the tonal system functio-
nally ambiguous chords are possible and, secondly, the probabilities of the competing 
interpretations are skewed (i. e., they diverge largely67).
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Figure 10. Schumann, “Am leuchtenden Sommermorgen”, No. 12 from Dichterliebe, mm. 1–13

The example of Schumann’s lied provides an additional instance of the interaction bet-
ween predictive processing, online learning and expectancy violation: When the initial 
sonority reappears for the third time (m. 8) after a strong stabilization of the Bb-major key, 
it is continued as a dominant-seventh chord (mm. 8–9) providing the B-major context 
that was originally expected. However, after having created a strong garden-path effect 
by subverting the established hearing of the initial dominant seventh chord, Schumann 
here demonstrates a second comparably strong effect by playing yet another trick on the 
established expectation: After two occurrences of the German sixth chord reinterpretati-
on, the continuation to B major which was previously the most likely has now turned into 
an unlikely progression. The basis of this effect is again twofold: Firstly, it takes advantage 
of the established Bb-major context and the higher likelihood of interpreting the sonority 
as a German sixth chord in Bb-major rather than expecting a modulation. Secondly, 
there is an effect of online learning of this motivic sequence during the course of the first 
eight measures.68 With respect to the first aspect, it is important to note that, without 
any additional context, the probability of tonal function and key of the pitch class set 
Gb/F#–Bb/A#–Db/C#–(Fb)/E is highly favoring the interpretation of a dominant-seventh 
chord, whereas this probability changes once a previous context in the key of Bb is esta-
blished. Regarding this second aspect, Schumann’s piece provides a case of online lear-
ning (or what Darrell Conklin as well as Marcus Pearce and Geraint Wiggins refer to as 
“short-term model,”)69 i. e., learning during the course of a piece. Another example of the 
strong effects of expectancy violations based on online learning is found in the second 
movement of Schubert’s piano sonata A major D. 959, in which the multiple repetition 
of the A–G# motive in F# minor is unexpectedly replaced by the step A–G in D major 

67 If the probabilities for the different options of continuation were not skewed but rather similar, we 
would hear them as two (or more) equally possible or plausible continuations.

68 See Rebuschat / Rohrmeier / Cross 2011 and Rohrmeier / Cross 2014 for an empirical exploration of 
online learning effects.

69 Conklin 2013; Pearce 2005; Pearce / Wiggins 2006.
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(mm. 189–190). While this effect can be simply accounted for in terms of online learning 
and a short-term model of pitch-class distribution or melodic-harmonic bigram structure, 
this and the previous example illustrate the strong contribution of online-learning to liste-
ning and the interaction of long-term and short-term knowledge to musical experience.

Effects of expectancy, expectancy violation, ambiguity, and revision continue to have 
an (albeit weaker) effect even over the course of multiple listening. Such effects and their 
emotional correlates that remain after multiple listening would be difficult to account for 
considering the ongoing implicit learning and, particularly, the learning of the veridical 
structure of a piece. One potential explanation that solves this dilemma is proposed by 
Ray Jackendoff: He suggests that the parser constitutes a separate module that is “‘infor-
mationally encapsulated’ from long-term memory of pieces”70 and overrides veridical 
knowledge to some extent by operating independently on the musical input. Accord-
ingly, the same backtracking and revision processes would still operate each time we 
listen to the opening of Beethoven’s first symphony triggering similar emotional effects 
despite our growing knowledge of the piece.

Altogether, the examples above illustrate how closely musical expectancy is linked to 
implicit learning and implicit knowledge both in long-term enculturation and short-term 
musical listening.71 It is further deeply grounded in the processing of local as well as hi-
erarchical structure, and involves multiple nested dependencies as well as the workings 
of the recursive parsing mechanism that provides incremental structure building, pre-
dictive generation, update and revision processes. Automatic expectancy formation, ef-
fects of retardation, anticipation, expectancy violations, deceptive structures, ambiguity, 
musical garden-path phenomena and revision: Such effects in musical listening and the 
emotional experience72 result from the operation of an ongoing parsing mechanism that 
processes the musical stream, generates likely parses and continuations, and matches 
them with the ongoing stream of musical events.

5. Conclusion

Generally, perspectives of cognition and modeling may provide a number of contribu-
tions to the field of music theory: Apart from demonstrating the necessity of precise 
specification of covert assumptions and characterizing constraints of theoretical descrip-
tion that arise from problems such as sparsity or overfitting, they illustrate the insight that 
theoretical models of music and expectancy are intrinsically linked to implicit or explicit 
underlying formal, computational assumptions.

After all, musical expectancy is intrinsically linked to cognitive accounts of predictive 
processing. It provides a constructive case for the mutual interaction of music theory 
and music cognition73 and illuminates ways in which concepts from music cognition, 
computational modeling, and (neuro)psychology may help to address music-theoretical 

70 Jackendoff 1991, 221; compare also the discussion in Temperley 2001.

71 Rohrmeier / Rebuschat 2012.

72 See, e. g., Meyer 1956; Koelsch 2010, 2012; Rohrmeier / Koelsch 2012.

73 For further discussion, see Pearce / Rohrmeier 2012.
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issues from a different perspective. They provide ways to support, adapt, and revise 
music-theoretical concepts, to clarify theory formation in music analysis and to take into 
account music-theoretical insights in the formation of cognitive theory.
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